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Abstract. The purpose of satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry (SGG) is to
determine the gravitational field on and outside the Earth’s surface from given gradients of the gravitational
potential and/or the gravitational field at satellite altitude. In this paper both satellite techniques are analysed and
characterized from a mathematical point of view. Uniqueness results are formulated. The justification is given for
approximating the external gravitational field by finite linear combination of certain gradient fields (for example,
gradient fields of single-poles or multi-poles) consistent to a given set of SGG and/or SST data. A strategy of
modelling the gravitational field from satellite data within a multiscale concept is described; illustrations based on
the EGM96 model are given.

Key words: Earth’s external gravitational field, multiscale modelling, SST and SGG, uniqueness, well-posedness

1. Introduction

Over the years geoscientists have realized the great complexity of the Earth and its envi-
ronment. In particular, the knowledge of the gravity potential and its level (equipotential)
surfaces have become an important issue. Following the basic principles, various positioning
and gravity-field-determination techniques have been designed by geoengineers. Considering
the spatial location of the data, one may differentiate between terrestrial (surface), airborne,
and spaceborne methods.

The conventional way that is known to the mathematical community is to determine the
Earth’s gravitational potential using (the magnitudes of) the gravity gradients as boundary
values on the Earth’s surface (see [1–6]. This approach leads to an exterior oblique boundary-
value problem, since the actual surface of the Earth does not coincide with the equipotential
surface of the geoid. Provided that both the boundary and the boundary-values are of sufficient
smoothness, the oblique boundary-value problem can be solved by well-known (Fredholm)
integral-equation methods using the potential of a single layer. These results are summed up
in the books by Bitzadse [7] and Miranda [8] (see also [9], [10]).

Observed data material as required for the oblique boundary-value problem from terrestrial
source, however, is simply not available globally and will not be for the forseeable future (see
Figure 1). Consequently, the determination of the Earth’s gravitational potential via an exterior
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Figure 1. Location of 1◦ × 1◦ gravity information of sufficient accuracy (from IAPG, Munich)

oblique boundary-value problem is only of theoretical significance. In practice, a variety of
combined techniques must be used to obtain a gravitational potential model of global scale.

Regarding the data types that are observable today we may differentiate between various
measurement principles of the gravity field involving derivatives up to the order two, namely
gravity measurements, astronomical positioning, satellite laser ranging, satellite radar al-
timetry, satellite-to-satellite tracking, and satellite gravity gradiometry.

Presently available data sources are as follows (cf. [11–13]:
(1) Mean-gravity anomalies, taken typically over areas of 100 × 100 km2 or 50× 50 km2, are
derived from terrestrial gravimetry in combination with height measurements and from ship-
borne gravimetry. Mean values of highly acceptable accuracy are available only for North
America, Western Europe, and Australia.
(2) In ocean areas, satellite radar altimetry may in some sense be regarded as a direct geoid
measuring technique. However, after removing time-varying effects, such as tides, by averag-
ing repeated measurements, the resulting stationary sea surface still deviates from the geoid
due to the dynamic ocean topography.
(3) For more than three decades now, several institutions have determined geopotential models
from satellite orbit analysis. These are derived from the combined analysis of orbits of a
large number of mostly non-geophysical satellites with different orbit elements. A variety of
tracking techniques can be exploited by laser and Doppler measurements. These models are
presented as sets of Fourier (orthogonal) coefficients of a spherical harmonic expansion of
the field, and they provide information on the long-wavelength part of the spectrum of the
gravitational field only.

There exist combined models of these three data sources, where the best model seems
to be the NASA, GSFC, and NIMA Earth Geopotential Model EGM96 (cf. [14]). However,
neither the above three data sources nor their combination can meet the requirements from
physical geodesy, solid-Earth physics, oceanography, geoexploration and -prospection. The
traditional techniques of Earth’s gravitational-field determination have reached their intrinsic
limits. There are essentially two reasons for this fact: An orbit is rather insensitive to local
features of the gravitational field, and this insensitivity increases with increasing orbit altitude,
and the satellites which can be and are being used are flying at altitudes which are too high for
the determination of short wavelengths phenomena. In geophysical reality we have to accept
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the following principles: the gravitational field of the Earth partially reflects its internal density
distribution (cf., for example, [15]). Internal density signatures are mapped to gravitational
field signatures. Gravitational signatures smooth out rapidly (i.e. exponentially) with increas-
ing distance from the attracting body. As a geoengineering consequence, positioning systems
are ideally located as far as possible from Earth, while gravity-field sensors are ideally located
as close as possible to Earth. In future, therefore, any advances must rely on space techniques
of high-flying positioning systems and low Earth orbiters, because only they provide useful
global, regular and dense data sets of high and homogeneous quality.

Fortunately, high spatial resolution can be expected from three actual gravity missions, viz.
CHAMP (i.e.: a German GFZ mission with launch 2000 and an initial altitude of 450 km),
GRACE (i.e.: a GFZ/NASA advanced mission with launch 2002 and an initial altitude of about
450 km), GOCE (i.e.: an ESA high-resolution gravity field mission with planned launch 2005
and an altitude of about 250 km). The observational techniques to be realized, respectively, are
satellite-to-satellite tracking in the high-low mode (SST hi-lo), satellite-to-satellite tracking in
the low-low mode (SST lo-lo), and satellite gravity gradiometry (SGG).

The scientific justification, the research objectives, and the observational requirements for
the gravitational satellite missions CHAMP, GRACE, GOCE have been presented many times
by physical geodesists over the past few years, and especially recently in three ESA-reports
[11–13]. The basic observable in all three cases is the gravitational acceleration. In the case
of SST hi-lo, with the motion of the high-orbiting GPS satellites assumed to be perfectly
known, this corresponds to an in situ 3-D acceleration measurement in the low Earth’s orbiter
(LEO). For SST lo-lo it is the measurement of the acceleration difference over the intersatel-
lite distance and in the line-of-sight (LOS) of the two low Earth’s orbiters. In the case of
gradiometry it is the measurement of acceleration differences in 3-D over the time baseline of
the gradiometer.

In short, we have the following characterization of the observational variants:

SST hi-lo: 3-D acceleration = gravitational gradient

SST lo-lo: acceleration difference = difference in gradient

SGG: differential = gradient of gradient

In a mathematical sense it is a transition from the first derivatives of the gravitational
potential via a difference in first derivatives to the second derivatives. The guiding parameter
that determines the sensitivity with respect to the spatial scales of the Earth’s gravitational
potential is the distance between the test masses, being almost infinite for SST hi-lo and
almost zero for SGG. The purpose of these three measurement concepts are to counteract
the natural attenuation of the gravitational field with altitude by differential measurement,
where the gravitational sensitivity increases with decreasing distance.

In what follows satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG)
are characterized from a mathematical point of view. Uniqueness results are formulated. More-
over, the mathematical justification is given for approximating the external gravitational field
by finite linear combinations of certain gradient fields (for example, gradient fields of single
poles, multipoles, and kernel functions) by use of a prescribed set of SST and/or SGG data.
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Figure 2. Illustration of the sets � and �

2. Formulation of the problems

We begin by introducing the mission concepts of CHAMP, GRACE, and GOCE in more detail.

2.1. THE SST PROBLEMS

The purpose of high-low satellite-to-satellite tracking (hi-lo SST) by use of the Global Po-
sitioning System (GPS) (as realized e.g. by the recently (2000) launched German satellite
CHAMP (= Challenging Mini-Satellite Payload for Geophysical Research and Application)
of the GeoForschungsZentrum (GFZ) Potsdam) is to develop the geopotential field from mea-
sured ranges (geometrical distances) between a low Earth orbiter (LEO) and the high-flying
GPS-satellites. Next, hi-lo SST is discussed from a mathematical point of view as the problem
of determining the external gravitational field of the Earth from a given set of gradient vectors
at the altitude of the low Earth orbiter (LEO).

In order to translate hi-lo SST into a mathematical formulation (see [16, pp. 259–271],
[17], for alternative approaches [11–13, 18–27]) we start from the following geometrical
situation (cf. Figure 2): Let the surface � of the Earth �int and the orbital set � of the low
Earth orbiter (LEO) be given in such a way that � is a strict subset of the Earth’s exterior �ext

satisfying

σ sup = sup
x∈�

|x| < γ = inf
x∈� |x|. (1)

The arrangement of the GPS-satellites is such that at least four satellites are simultaneously
visible above the horizon anywhere on the Earth’s surface � and the orbit � of the low Earth
orbiter as well, all the time. Moreover, the GPS-satellites are supposed to be placed in six
circular orbits �γi of radii γi , i = 1, . . . , 6, around the origin with γi � γ , i = 1, . . . , 6;
and n be the total number of GPS-satellites. To every LEO-position x ∈ �, therefore, there
exist at least m(≥ 4) visible GPS-satellites located at yl1, . . . , ylm , li ∈ {1, . . . , n} for i =
1, . . . , m, such that the geometrical distances (ranges) dli = |x − yli |, li ∈ {1, . . . , n} for i =
1, . . . , m, are measurable. Since the orbits of the GPS-satellites are assumed to be known, the
coordinates of the low Earth orbiter (LEO) located at x ∈ � can be derived from simultaneous
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Figure 3. Satellite-to-satellite tracking in the high-low mode: the CHAMP concept (from [12, p. 24])

range measurements to the satellites. From this the relative positions of the satellites at x and
yli , i.e.

pli = x − yli , li ∈ {1, . . . , n}, i = 1, . . . , m, (2)

become available at time t . The relative velocities vli and accelerations ali are obtainable
by differentiating the relative positions with respect to t . We may assume that the mea-
surements are produced at a sufficiently dense rate so that (numerical) differentiation can
be performed without any difficulty. The interesting expressions now are the relative accel-
erations ali , i = 1, . . . , m, all of which are determined for inertial motion (in accordance
with the Newton-Euler equation) by the gravitational field only and may be equated by the
difference of the gradient field of the geopotential, V , here evaluated at the locations of x and
yli , li ∈ {1, . . . , n} for i = 1, . . . , m. To be more specific,

ali (x) = (∇V )(x)− (∇V )(yli ), x ∈ �, (3)

i = 1, . . . , m. (Note that the gravitational force is considered now to be independent of time
t at a certain position. In other words, we assume here that the time-like variations of the field
are so slow as to be negligible.) From (3) it follows that

(∇V )(x) =
m∑
i=1

αi

(
ali (x)+ (∇V )(yli )

)
, x ∈ �, (4)

for all selections (α1, . . . , αm)
T ∈ R

m satisfying
∑m

i=1 αi = 1. The influence of the Global
Positioning System (GPS) to the choice of the coefficients α1, . . . , αm will not be investigated
here. (Usually, in practice, (∇V )(yli ) are supposed to be so small as to be negligible).

Loosely phrased, the mathematical formulation of the hi-lo SST problem now reads as
follows:

Let there be known the gradient vectors



24 W. Freeden, V. Michel, and H. Nutz

Figure 4. Satellite-to-satellite tracking in the low-low mode: the GRACE concept (from [12] p. 25)

v(x) = (∇V )(x), x ∈ χ, (5)

for a subset χ ⊂ � of points at the flight positions of the low Earth orbiter (LEO). Find an
approximation u of the geopotential field v on �ext, i.e. on and outside the Earth’s surface,
such that the geopotential field v and its approximation u are in ε-accuracy on �ext (with
respect to the uniform topology in �ext) so that v(x) = u(x) for all x ∈ χ .

The problem of knowing the vectors (∇V )(yli ), i = 1, . . . , m, in Equation (3) is no longer
relevant, if low-low satellite-to-satellite tracking (briefly, lo-lo SST) will be used (as planned
by the future GFZ/NASA ‘two satellite configuration’ GRACE (= Gravity Recovery and
Climate Experiment) (2001)). By the tandem-mode procedure of lo-lo SST (see the expla-
nations in [11–13]) the vectors ali , i = 1, . . . , m, are measurable at two different positions
x and x∗ with x∗ = x + h(x), x ∈ �, where h : � → R

3 is the difference vector field
between the two satellite positions (i.e. |h(x)| ≥ ι > 0 with ι denoting the intersatellite range).
Consequently, the mathematical scenario of the lo-lo SST problem is characterized as follows:

Let there be known the vectors v(x) = (∇V )(x) and ṽ(x) = v(x + h(x)) = (∇V )(x +
h(x)), x ∈ χ , for a subset χ ⊂ �. Find an approximation u of v on �ext, such that v and u

are in ε-accuracy (with respect to the uniform topology in �ext), so that v(x)−v(x+h(x)) =
u(x)− u(x + h(x)) for all x ∈ χ .

2.2. THE SGG PROBLEM

As we already mentioned, the current knowledge of the Earth’s gravity field, as derived from
various observing techniques, is incomplete. Within reasonable time, substantial improvement
can only come from exploiting new approaches based on satellite-gravity-observation meth-
ods. The purpose now is to provide an overview of the satellite technique SGG to be realized
in the ESA satellite GOCE (= Gravity Field and Steady-State Ocean Circulation Mission)
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Figure 5. Satellite Gradiometry: the GOCE concept (from [12] p. 26)

that has a planned launch in the year 2005. The concept considered for the GOCE mission (cf.
[13]) is satellite gravity gradiometry (SGG), i.e. the measurement of the relative acceleration
of test masses at different locations inside one satellite.

In an idealized situation, free from non-gravitational influences, the acceleration vector of
a proof-mass in free fall at the centre x of mass of a space vehicle is, according to Newton’s
law, equal to the gradient of the gravitational potential: v = ∇V (for further details see [22,
23, 26–31]). Considering now the motion of a second proof-mass at y close to x relative
to the first one, its acceleration is, in a linearised sense, given by v(y) � v(x) + v(x)(y −
x). The matrix v(x) = (∇v)(x) is the Hesse matrix v(x) = ∇(2)V (x) = (∇ ⊗ ∇)V (x)

consisting of all second-order derivatives of the Earth’s gravitational potential V . Because of
its tensor properties, v is called the gravitational tensor. In other words, measurements of the
relative accelerations between two test masses provide information about the second-order
partial derivatives of the gravitational potential V . In an ideal observational situation, the full
Hesse matrix is available by an array of test masses.

An illustrative view of satellite gradiometry based on Newton’s theory of gravitation is as
follows (cf. [32, p. 116]: History has it that Newton, when working on his law of gravitation,
was inspired by a falling apple. Referring to the theory of gravitation in as the tale of the
falling apple, it would be appropriate for us to view gradiometry as the story of two falling
apples. In their famous book, C.W. MISNER et al. [33, pp. 195–218]) made this point clear.
In one of their examples it is shown, that measuring the relative distance between the shortest
paths taken by two ants walking at the skin of an apple, from two adjacent begin- to two
adjacent end-points, the geometry of its curved surface can be derived. Translated to our case,
shortest path means geodetic or free fall of two test particles (apples), from the relative motion
of which the geometry of the curved space can be inferred, curved by the gravitational field of
the Earth: if gravity is interpreted in terms of geometry in the sense of Einstein, gradiometry,
when all nine observable gradient components are measured in a point, shows the complete
local geometry of the relative motion of adjacent proof-masses in free fall. However, it is more
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Figure 6. Proof masses in orbit: (a) independent and (b) constrained by springs (from [32])

practical to constrain their relative motion by highly sensitive springs and measure instead the
tension and compression of the springs. This is equivalent to saying that a gradiometer is
realized by a coupled system of highly sensitive micro-accelerometers. (A gradiometer of this
kind is envisaged for the already mentioned GOCE mission planned by ESA (cf. [13]) to
produce a coverage of the entire Earth with measurements).

In conclusion, the mathematical formulation of the SGG-problem (after separating all non-
gravitational influences) reads as follows:

Let there be known from the gravitational field v of the Earth the gradients

v(x) = (∇v)(x), x ∈ χ, (6)

for a subset χ of the orbit � of the low Earth orbiter (LEO). Find an approximation u on
�ext = � ∪ �ext, i.e. on the Earth’s surface and in the outer space �ext, such that v and its
approximation u are in ε-accuracy on �ext (with respect to the uniform topology) so that

(∇v)(x) = v(x) = (∇u)(x)

for all x ∈ χ .

3. Notational background

Let us begin by introducing some notations that will be used throughout this paper. We con-
sider R

3 to be equipped with the canonical inner product · and the associated norm | · |. Using
ε1, ε2, ε3 as canonical orthonormal basis in R

3 we may represent each element x ∈ R
3 in

Cartesian coordinates as follows: x = �3
i=1(x · εi)εi .

If G is a set of points in R
3, ∂G will denote its boundary. The set G = G ∪ ∂G will be

called the closure of G. A set G ⊂ R
3 will be called a region if it is open and connected.

The restriction of a function f to a subset M of its domain is denoted by f |M ; for a set L
of functions we set L|M = {f |M∣∣f ∈ L}.
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A function f possessing k continuous derivatives on the whole domain is said to be of
class C(k) (note that C(k), c(k), c(k) is used for scalar-valued, vector-valued, and tensor-valued
functions, respectively).

A surface � is called regular, if it satisfies the following properties:

(i) � divides the three-dimensional Euclidean space R
3 into the bounded region �int (inner

space) and the unbounded region �ext (outer space) defined by �ext = R
3 − �int.

(ii) � is a closed and compact surface with no double points.

(iii) The origin 0 is contained in �int.

(vi) � is a C(2)-surface, i.e. � is locally C(2)-smooth.

From this definition it is clear that all (geophysically relevant) Earth models are included.
Regular surfaces are, for example, a sphere, an ellipsoid, a geoid, and the (sufficiently smooth)
real Earth’s surface.

Pot(�ext) denotes the space of functions V : �ext → R with the following properties:

(i) V is twice continuously differentiable in �ext: V ∈ C(2)(�ext),

(ii) V satisfies Laplace’s equation in �ext: 'V = 0in�ext,

(iii) V is regular at infinity:

|V (x)| = O

(
1

|x|
)
, |∇V (x)| = O

(
1

|x|2
)
, |x| → ∞.

We denote by Pot(k)
(
�ext

)
the space of all functions V : �ext → R such that V is a member

of class C(k)
(
�ext

)
and V

∣∣�ext satisfies, in addition, the properties (i), (ii), (iii) of a function
of class Pot(�ext). Briefly formulated,

Pot(k)
(
�ext

) = Pot(�ext) ∩ C(k)
(
�ext

)
.

By pot(�ext) we denote the space of vector fields v : �ext → R
3 satisfying the following

properties:

(i) v is continuously differentiable in �ext: v ∈ c(1)(�ext),

(ii) v is a harmonic vector field (cf. [34] p. 24) in �ext:
div v = 0, curl v = 0 in�ext,

(iii) v is regular at infinity:

|v(x)| = o(1), |x| → ∞.

In analogy to the scalar notation we let

pot(k)
(
�ext

) = pot(�ext) ∩ c(k)
(
�ext

)
.
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By pot(�ext) we denote the space of tensor fields v : �ext → R
3×3 satisfying the following

properties:
(i) v is continuously differentiable in �ext: v ∈ c(1)(�ext),
(ii) v is a harmonic tensor field in �ext:

div v = 0, curl v = 0 in�ext,

(iii) v is regular at infinity:
|v(x)| = o(1), |x| → ∞.

In analogy to the scalar and vectorial approach we let

pot(k)
(
�ext

) = pot(�ext) ∩ c(k)
(
�ext

)
.

As it is well-known, every member v ∈ pot(�ext) can be represented as a gradient field
v = ∇v, where v is of class pot(�ext), and vice versa (see, for example, [19, 34, 35]). As a
consequence of this, in connection with the fact that every v ∈ pot (�ext) can be represented as
a gradient field v = ∇V with V ∈ Pot (�ext), we finally get that a tensor field v ∈ pot (�ext)

can be represented as the Hesse tensor of a scalar field V ∈ Pot (�ext):

v = ∇(2)V = (∇ ⊗ ∇) V .

Obviously, v ∈ pot (�ext) of the form v =
3∑

i,k=1
Vikε

i ⊗ εk fulfills Vik ∈ Pot (�ext).

C(0)(�) is the Banach space with the norm defined by

||F ||C(0)(�) = sup
x∈�

|F(x)|.

In C(0)(�) we are able to introduce the (L2−)inner product

(F,G)L2(�) =
∫
�

F(x)G(x)dω(x),

where dω(x) (or, when confusion is not likely to arise, dω) denotes the surface element. The
inner product (·, ·)L2(�) implies the norm

‖F‖L2(�) =
√
(F, F )L2(�).

The space (C(0)(�), (·, ·)L2(�)) is a pre-Hilbert space. For every function F ∈ C(0)(�) we
have the norm-estimate

‖F‖L2(�) ≤ C‖F‖C(0)(�), C = √‖�‖. (7)

By L2(�) we denote the space of (Lebesgue) square-integrable functions on the boundary �.
L2(�) is a Hilbert space with respect to the inner product (·, ·)L2(�) and a Banach space with
respect to the norm ‖ · ‖L2(�), L2(�) is the completion of C(0)(�) with respect to the norm
‖ · ‖L2(�).

For later use we finally introduce the concept of fundamental systems:

DEFINITION 3.1 A system Y = (yn)n=0,1,... ⊂ �int is called a fundamental system in �int, if
F : �int → R with F ∈ C(2)(�int), 'F = 0 in �int, and F(yn) = 0 for n = 0, 1, . . . implies
F = 0 in �int. Analogously, a system Y = (yn)n=0,1,... ⊂ �ext is called a fundamental system
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in �ext, if F : �ext → R with F ∈ C(2)(�ext), 'F = 0 in �ext, F is regular at infinity, and
F(yn) = 0 for n = 0, 1, . . . implies F = 0 in �ext.

4. Uniqueness of the satellite problems

Our considerations start with the study of uniqueness corresponding to an infinite system
χ ⊂ � of known satellite data.

4.1. UNIQUENESS OF THE SST PROBLEM

First, we are concerned with the following theorem which provides the uniqueness of the SST
problem from given vector values (cf. [36]).

THEOREM 4.1 Let � (i.e. the Earth’s surface) be regular. Suppose that χ (i.e. the subset of
observational points on the satellite orbit �) is a fundamental system in �ext with

σ sup = sup
x∈�

|x| < γ ≤ inf
x∈χ |x|. (8)

If v is of class pot(0)
(
�ext

)
such that v(x) = 0, x ∈ χ , then v = 0 in �ext.

Proof. Any field v ∈ pot(0)(�ext) can be expressed in the form ∇V , V ∈ Pot(1)(�ext),
hence, the coordinate functions v · εi , i = 1, 2, 3, satisfy

'(v · εi) = '(εi · ∇)V = (εi · ∇)'V = 0 (9)

in �ext, since the harmonic function V is arbitrarily often differentiable in �ext. Moreover,
according to our assumption, (εi · ∇)V (x) = 0 for all points x of the fundamental system χ

in �ext. This implies v · εi = 0 in �ext, i = 1, 2, 3, as required. �
Furthermore, we are able to verify the following result (for a similar theorem see [16]).

THEOREM 4.2 Suppose that χ is a fundamental system in �ext satisfying (8). If v is a field of
class pot(0)(�ext) with (−x) · v(x) = 0, x ∈ χ , then v = 0 in �ext.

Proof. Again, we base our arguments on the identity v = ∇V . From our assumptions it is clear
that there exists a sphere B with radius β around the origin such that σ sup = supx∈�|x| < β <

γ , i.e. Bext is a strict subset of �ext. Outside the sphere B the potential V ∈ Pot(∞)(Bext) may
be expanded in terms of outer harmonics (see Example 5.1)

V (x) =
∞∑
n=0

2n+1∑
k=1

V ∧(n, k)Hn,k(β; x), x ∈ Bext, (10)

where V ∧(n, k), n = 0, 1, . . . ; k = 1, . . . , 2n+ 1, are the expansion coefficients

V ∧(n, k) =
∫
B

V (x)Hn,k(β; x)dω(x). (11)

It is not hard to see that

− x

|x| · (∇V )(x) =
∞∑
n=0

2n+1∑
k=1

n+ 1

|x| V ∧(n, k)Hn,k(β; x), x ∈ Bext.
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Hence, x �→ (−x) · (∇V )(x), x ∈ Bext, is a function of class Pot(∞)(Bext) from which we
know the assumption that (−x) · (∇V )(x) = 0 for all x ∈ χ . Consequently, we obtain

∞∑
n=0

2n+1∑
k=1

V ∧(n, k)(n+ 1)Hn,k(β; x) = 0, x ∈ χ. (12)

Since χ is assumed to be a fundamental system in Bext, Equation (12) holds true in Bext. The
theory of spherical harmonics then tells us that V ∧(n, k)(n+ 1) = 0, hence, V ∧(n, k) = 0 for
all n = 0, 1, . . . ; k = 1, . . . , 2n + 1. This yields V = 0 in Bext. By analytical continuation
we get V = 0 in �ext, hence, v = 0 in �ext. This is the desired result. �

Theorem 4.2 means that the Earth’s external gravitational field is uniquely recoverable
from first (negative radial) derivatives corresponding to a fundamental system χ of the satel-
lite orbit. In other words, the Earth’s external gravitational field is uniquely detectable on
and outside the Earth’s surface � from GPS-SST data corresponding to a system of gradient
vectors given on a fundamental system χ on the satellite orbit �.

From potential theory it is clear that analogous uniqueness theorems (as mentioned before)
cannot be deduced for the ‘actual’ hi-lo SST problem of finding the external gravitational field
of the Earth from a finite subsystem χ on the satellite orbit �. In Section 7, however, we shall
show that, given the SST data for a finite subset χ ⊂ �, we are able to find, for every value
ε > 0, an approximation u of the external gravitational field v of the Earth in ε-accuracy so
that u additionally is consistent to the SST data on the finite subsystem χ .

4.2. UNIQUENESS OF THE SGG PROBLEM

Our considerations start with the problem of uniqueness corresponding to an infinite system
χ ⊂ � of known SGG data.

THEOREM 4.3 Suppose that χ (i.e. the subset of observational points of the satellite orbit
�) is a fundamental system in �ext such that (8) holds true. If v is of class pot(0)

(
�ext

)
with

v(x) = 0, x ∈ χ, then the associated field v ∈ pot(1)(�ext) with v = ∇v satisfies v = 0 in
�ext.

Proof. Any field v of the class pot(0)(�ext) can be expressed in the form ∇(2)V = (∇ ⊗ ∇)V ,
V ∈ Pot(2)(�ext). Furthermore, the coordinate functions Vij = εi

T vεj , i, j ∈ {1, 2, 3}, satisfy
'Vij = 0 in �ext. This implies Vij = 0 in �ext, i, j ∈ {1, 2, 3}, because of the definition of
a fundamental system. From v = (∇ ⊗ ∇)V = 0 we finally get V = 0 in �ext and, thus,
v = ∇V = 0, as required. �

In other words, the Earth’s external gravitational field v is uniquely detectable on and
outside the Earth’s surface � if SGG data (i.e. second-order derivatives of the Earth’s gravita-
tional potential V ) are given on a fundamental system χ (on the satellite orbit).

Furthermore, we are able to verify the following result:

THEOREM 4.4 Suppose that χ is a fundamental system in �ext satisfying (8). If v is a field
of class pot(0)

(
�ext

)
with x · (v(x)x) = 0, x ∈ χ , then v = 0 in �ext, where v = ∇v.

Proof. Clearly, we base our arguments on the identity v = (∇ ⊗ ∇)V . From our as-
sumptions it is clear that there exists a sphere B with radius β around the origin such that
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σ sup = supx∈�|x| < β < γ , i.e. Bext is a strict subset of �ext. Outside the sphere B the
potential V ∈ Pot(∞)(Bext) may be expanded in terms of outer harmonics

V (x) =
∞∑
n=0

2n+1∑
k=1

V ∧(n, k)Hn,k(β; x), x ∈ Bext, (13)

where V ∧(n, k) are the orthogonal coefficients. By elementary calculations we get

x

|x| ·
(
∇(2)V (x)

x

|x|
)

= x

|x| ·
(
(∇ ⊗ ∇V )(x)

x

|x|
)

=
(

x

|x| · ∇x

)(
x

|x| · ∇x

)
V (x)

=
∞∑
n=0

2n+1∑
k=1

(n+ 1)(n + 2)

|x|2 V ∧(n, k)Hn,k(β; x),

x ∈ Bext. Hence x �→ x · ((∇ ⊗ ∇V )(x)x), x ∈ Bext, is a harmonic function in Bext. In
accordance with our assumption x · ((∇ ⊗ ∇V )(x)x) = 0, x ∈ χ , we thus obtain

∞∑
n=0

2n+1∑
k=1

V ∧(n, k)(n+ 1)(n+ 2)Hn,k(β; x) = 0, x ∈ χ. (14)

Since χ is a fundamental system in Bext, Equation (14) holds true in Bext. The theory of
spherical harmonics then tells us that V ∧(n, k)(n + 1)(n + 2) = 0, hence, V ∧(n, k) = 0 for
n = 0, 1, . . . ; k = 1, . . . , 2n + 1. This yields V = 0 in Bext. By analytical continuation we
have V = 0 in �ext, and, hence, v = ∇V = 0 in �ext.
�

Theorem 4.4 means that the Earth’s external gravitational field is uniquely recoverable from
‘second radial derivatives’ corresponding to a fundamental system χ ⊂ �.

From potential theory it is again clear that analogous uniqueness theorems (as mentioned
before) cannot be deduced for the ‘actual’ SGG problem of finding the external gravitational
field v of the Earth from a finite subsystem χ on the satellite orbit �. In what follows, however,
we shall show that, given the SGG data for a finite subset χ ⊂ �, we are able to find, for every
value ε > 0, an approximation u of the external gravitational field v of the Earth in ε-accuracy
so that u additionally is consistent to the SGG data on the finite subsystem χ .

5. Scalar approximation

Let A be a sphere inside (the Earth) �int of radius α centered at the origin 0 (cf. Figure 7) with

α < σ inf = inf
x∈� |x|.

We consider simultaneously the outer space Aext of the sphere A and the outer space �ext.
Of course, �ext ⊂ Aext.

A system (1n), 1n ∈ L2(A), n = 0, 1, . . . , is called complete in the Hilbert space L2(A),
if it satisfies the following property: For every 1 ∈ L2(A), the condition
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Figure 7. Illustration of the sets A and �

(1,1n)L2(A) =
∫
A

1(x)1n(x)dω(x) = 0

for all n = 0, 1, . . . implies 1 = 0 (in the sense of L2(A)).
In scalar potential theory a large number of systems (1̃n)n=0,1,... is known satisfying 1̃n ∈

Pot(0)
(
Aext

)
, 1̃n|A = 1n, n = 0, 1, . . . , and (1n)n=0,1,... is complete in L2(A) (see, for

example, [9, 10, 37–39]).
The most important system in the geosciences is the system of outer harmonics (i.e. multi-

poles).

Example 5.1. Let (Hn,k(α; ·)) n=0,1,...
k=1,... ,2n+1

be the system of outer harmonics given by

Hn,k(α; x) = 1

α

(
α

|x|
)n+1

Yn,k

(
x

|x|
)
, x ∈ Aext,

where {Yn,k} n=0,1,...
k=1,... ,2n+1

is a (maximal) system of spherical harmonics being orthonormal with

respect to the L2-inner product over the unit sphere. Then(
Hn,k(α; x)

∣∣∣
x∈A

)
n=0,1,...

is a linearly independent complete system in L2(A).

In order to illustrate the role of single poles we use the concept of fundamental systems.

Example 5.2. Suppose that Y = (yn)n=0,1,... is a fundamental system in Aint. Denote by

M(x, yn) = 1

|x − yn| , x ∈ Aext,

the single-poles (mass–points) at yn ∈ Y, n = 0, 1, . . . . Then(
M(x, yn)

∣∣∣
x∈A

)
n=0,1,...

is a linearly independent complete system in L2(A).
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It should be mentioned that the completeness of outer harmonics in L2(A) is a well-known fact
in potential theory (see, for example, [35, 40–42]). For mass-point systems the completeness
property has been proved already in [37] (in fact, the completeness can be verified, even for
arbitrary fundamental systems (yn)n=0,1,... in Aint and inner spaces of regular surfaces �).

Some examples of fundamental systems in Aint should be listed below:
(i) If Y is a countable dense set of points on a regular surface 3 ⊂ Aint with 3int ⊂ Aint,

then Y is a fundamental system in Aint.
(ii) If Y is a countable dense set of points in a region 3int ⊂ Aint, with 3 being a regular

surface satisfying dist(3,A) > 0, then Y is a fundamental system in Aint.

Remark 5.3. Consider the fundamental system Y = (yn)n=0,1,... in Aint generated by Y =(
yn

)
n=0,1,... as follows:

(i)
(
yn

)
is a countable dense system on the (real Earth’s) surface � ⊂ Aext,

(ii) (yn)n=0,1,... is obtained by letting yn = α2

|yn|2 yn.

This set seems to be a suitable point system for practical purposes (cf. the numerical experi-
ences in [38]).

Further complete systems can be obtained by using (K(x, yn))n=0,1,... with

K(x, y) = 1

|x|
∞∑
k=0

2k + 1

4πα2
σk

( |y|
|x|
)k

Pk

(
x

|x| ·
y

|y|
)
, x ∈ Aext, y ∈ Y ⊂ Aint, (15)

instead of the system (M(x, yn))n=0,1,... with

M(x, y) = 1

|x|
∞∑
k=0

( |y|
|x|
)k

Pk

(
x

|x| ·
y

|y|
)
, x ∈ Aext, y ∈ Y ⊂ Aint, (16)

provided that Y is a fundamental system in Aint with κ = supy∈Y|y| < α, and the coefficients
σk, σk �= 0 for k = 0, 1, . . . , have to be chosen in such a way that

∞∑
k=0

(2k + 1)|σk|
(κ
α

)k
< ∞. (17)

Example 5.4. Suppose that Y = (yn)n=0,1,... is a fundamental system in Aint with κ =
supy∈Y|y| < α. Let K(x, yn) be given by (15) (with coefficients σk, σk �= 0 for k = 0, 1, . . . ,
satisfying the condition (17)). Then(

K(x, yn)

∣∣∣
x∈A

)
n=0,1,...

is a linearly independent complete system in L2(A).

The proof of the completeness for the system (K(·, yn))n=0,1,... immediately follows from the
completeness of the spherical harmonics.

Remark 5.5. Of numerical significance are series expansions (15) with explicit (i.e. elemen-
tary) representation (as, for example, in the case of (16)).

Example 5.6. Let y0 be a fixed point in Aint. Denote by P
y0
n (x) the expression given by
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(
∂

∂y0

)β

K(x, y0)

∣∣∣∣∣[β]=n

, n = 0, 1, . . .


β : multiindex, [β] = β1 + β2 + β3,

(
∂

∂y0

)β

= ∂ [β]

∂y
β1
1 ∂y

β2
2 ∂y

β3
3

∣∣∣∣∣
y0


 .

Then
( ∂

∂y0

)β

K(x, y0)

∣∣∣∣∣[β]=n

∣∣∣∣∣∣
x∈A




n=0,1,...

is a linearly independent complete system in L2(A).

The proof follows from Maxwell’s representation theorem. (cf. e.g. [40 p. 44])
Applying the Kelvin transform with respect to the sphere A with radius α around the origin

(cf. e.g. [35]) Example 5.4 leads us to systems(
K(x, yn)

∣∣∣
x∈Aext

)
n=0,1,...

with

K(x, y) =
∞∑
k=0

2k + 1

4πα2
σk

(
α2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)
, x ∈ Aext, y ∈ Y ⊂ Aext,

where Y = (
yn

)
n=0,1,... is the point system generated by Y by letting yn = α2

|yn|2 yn, n =
0, 1, . . . (thereby assuming 0 /∈ Y).

Remark 5.7. Note that our assumptions imply the estimate

∞∑
k=0

(2k + 1)|σk|
(α
κ

)k
< ∞, (18)

where κ is given by

κ = inf
y∈Y

|y| > α.

Example 5.8. Suppose that Y = (
yn

)
n=0,1,... is given as described above. Let K(x, yn) be

given as above (with coefficients σk, σk �= 0 for k = 0, 1, . . . , satisfying (17)). Then(
K(x, yn)

∣∣
x∈A
)
n=0,1,...

is a linearly independent complete system in L2(A).

Typical examples of this type are known from harmonic spline and wavelet theory [16, 29,
38, 39] and geodetic implementations (see [27] and the references therein). We only mention:

(i) Abel-Poisson kernel:
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σk = 1, k = 0, 1, . . . .

The kernel reads as follows:

K(x, y) = 1

4π

|x|2|y|2 − α2

(L (x, y))3/2 , x ∈ Aext, y ∈ Y ⊂ Aext,

where we have introduced the abbreviation

L(x, y) = |x|2|y|2 − 2α2x · y + α4.

(ii) Singularity kernel:

σk = 2

2k + 1
, k = 0, 1, . . . .

The kernel is given by

K(x, y) = 1

2π

1

(L(x, y))1/2
, x ∈ Aext, y ∈ Y ⊂ Aext.

(iii) Logarithmic kernel:

σk = 1

(k + 1)(2k + 1)
, k = 0, 1, . . . .

Now we have

K(x, y) = 1

4πα2
log

(
α2 − x · y + (L(x, y))1/2

|x‖y| + x · y
)
, x ∈ Aext, y ∈ Y ⊂ Aext.

Remark 5.9. Choosing (instead of (17) and (18)) σk, σk �= 0 for k = 0, 1, . . . , in such a way
that

∞∑
k=0

(2k + 1)|σk| < ∞

i.e. (|σk|−1/2)k=0,1,... is assumed to be summable (in the sense of [40] p. 88), κ and κ are
allowed to satisfy κ ≤ α and κ ≥ α, respectively.

An equivalent statement to the completeness of a system (1n)n=0,1,... in the space L2(A) is
the closure (see e.g. [43, p. 191] for the proof of the equivalence): A system (1n)n=0,1,...,
1n ∈ L2(A), n = 0, 1, . . . is called closed in L2(A) if, for a given function 1 ∈ L2(A) and
arbitrary ε > 0, there exist an integer N(= N(ε)) and constants a0, . . . , aN such that

∫
A

∣∣∣∣∣1(x)−
N∑

n=0

an1n(x)

∣∣∣∣∣
2

dω(x)




1/2

≤ ε.

The closure particularly means that any 1 ∈ C(0)(A) can be approximated by a member of
the span of (1n)n=0,1,... in the sense of the L2–metric on A.

The step from approximation on the sphere A to approximation in the outer space Aext can
be performed by the following theorem (cf. [9, 10, 37]):

THEOREM 5.10 Let K be a (not necessarily compact) subset of the closed outer space Aext

with dist(K, A) ≥ τ > 0. Then there exists a positive constant C = C(K, A) such that
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sup
x∈K

∣∣∣1̃(x)− ;̃(x)

∣∣∣ ≤ C


∫

A

(
1(y)−;(y)

)2
dω(y)




1/2

for all functions 1̃, ;̃ of class Pot(0)(Aext) with 1̃|A = 1, ;̃|A = ;.

Proof. Theorem 5.10 is easily verified by application of the Poisson integral formula

1̃(x)− ;̃(x) =
∫
A

P (x, y)
(
1(y)−;(y)

)
dω(y),

where P(x, y) denotes the Abel-Poisson kernel (see e.g. [35, pp. 240ff.]). Put

C = C(K, A) = sup
x∈K


∫

A

(
P(x, y)

)2
dω(y)




1/2

. (19)

Then, for each x ∈ K , the Cauchy-Schwarz inequality yields(
1̃(x)− ;̃(x)

)2 ≤ C2
∫
A

(
1(y)−;(y)

)2
dω(y). (20)

This is the desired result. �
Let 1̃ ∈ Pot(0)

(
Aext

)
with 1̃|A = 1. If now (1̃n)n=0,1,... ⊂ Pot(0)

(
Aext

)
is given such that

1̃n|A = 1n, n = 0, 1, . . . , forms a complete system in L2(A), then for every value ε > 0
there exist an integer N(= N(ε)) and coefficients a0, . . . , aN such that

sup
x∈K

∣∣∣∣∣1̃(x)−
N∑

n=0

an1̃n(x)

∣∣∣∣∣ ≤ C


∫

A

(
1(y)−

N∑
n=0

an1n(y)

)2

dω(y)




1/2

≤ Cε

for each subset K ⊂ Aext with dist(K, A) ≥ τ > 0, where C in general depends on
the choice of K and A. In other words, given 1̃ ∈ Pot(0)

(
Aext

)
with 1̃|A = 1, the L2-

approximation of the function 1 on the surface A implies uniform approximation of 1̃ by the
system (1̃n)n=0,1,... on each subset K of Aext with positive distance to A.

The system (1̃n) is a ‘basis system’ (more precisely: scalar basis system) in the following
sense: Each 1̃ ∈ Pot(0)

(
Aext

)
can be approximated, uniformly on subsets of Aext with positive

distance to A, by finite linear combinations of (1̃n)n=0,1,... ⊂ Pot(0)
(
Aext

)
, i.e. for every

function 1̃ ∈ Pot(0)
(
Aext

)
there exists a member U ∈ spann=0,1,...(1̃n) in ε-accuracy (with

respect to the C(0)(K)–norm) on every set K with dist(K, A) ≥ τ > 0.
As a particular case we mention

sup
x∈�ext

∣∣∣∣∣1̃(x)−
N∑

n=0

an1̃n(x)

∣∣∣∣∣ ≤ Cε.
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Figure 8. Illustration of the sets A, K and K∗

6. Vectorial/tensorial approximation

Let K be a compact subset of Aext. Since Aext is assumed to be an open set, K has a positive
distance to the boundary A. Hence, there exists a regular surface K∗ with K ⊂ K∗

ext and
K∗

ext ⊂ Aext (cf. Figure 8).
In order to prove a basic theorem about vectorial and tensorial approximation, we have to

estimate supx∈K

∣∣∣(∇1̃
)
(x)

∣∣∣ and supx∈K

∣∣∣(∇(2)1̃
)
(x)

∣∣∣, respectively. Let D ∈ {∇,∇(2)} be a

differential operator. Given 1̃ ∈ Pot(0)
(
Aext

)
, we have

sup
x∈K

∣∣∣(D1̃
)
(x)

∣∣∣ = sup
x∈K

∣∣∣∣∣∣Dx

∫
K∗

1̃(y)
∂

∂n(y)
G∗(x, y)dω(y)

∣∣∣∣∣∣ , (21)

where G∗ denotes Green’s function for the scalar Dirichlet problem (cf. e.g. [35]) in K∗
ext.

Consequently, it follows that

sup
x∈K

∣∣∣(D1̃
)
(x)

∣∣∣ ≤ sup
x∈K∗

∣∣∣1̃(x)

∣∣∣ sup
x∈K

∫
K∗

∣∣∣∣Dx

∂

∂n(y)
G∗(x, y)

∣∣∣∣ dω(y). (22)

Setting

C∗ = C∗(K,K∗,D) = sup
x∈K

∫
K∗

∣∣∣∣Dx

∂

∂n(y)
G∗(x, y)

∣∣∣∣ dω(y), (23)

we find

sup
x∈K

∣∣∣(D1̃
)
(x)

∣∣∣ ≤ C∗ sup
x∈K∗

∣∣∣1̃(x)

∣∣∣ . (24)

Since K is a compact set in Aext, we are able to deduce the following statement:

THEOREM 6.1.
(i) Each scalar basis system

(
1̃n

)
n=0,1,...

, i.e. each subsystem
(
1̃n

)
n=0,1,...

of Pot(0)
(
Aext

)
,

where
(
1̃n|A

)
n=0,1,...

is complete in L2(A), implies a ‘vectorial basis system’ in the following
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sense: For v ∈ pot(Aext), there exists an approximation by a finite linear combination of vector

fields
(
∇1̃n

)
n=0,1,...

, uniformly on compact subsets of Aext.

(ii) Each scalar basis system
(
1̃n

)
n=0,1,...

, i.e. each subsystem
(
1̃n

)
n=0,1,...

of Pot(0)
(
Aext

)
,

where
(
1̃n|A

)
n=0,1,...

is complete in L2(A), implies a ‘tensorial basis system’ in the following

sense: For v ∈ pot(Aext), there exists an approximation by a finite linear combination of

tensor fields
(
∇(2)1̃n

)
n=0,1,...

, uniformly on compact subsets of Aext.

Proof. We shall only prove the second part, for the first part can be proved analogously.
Suppose that v is of class pot(Aext) and K is a compact subset of Aext. Then there exists
a function V ∈ Pot(Aext) such that v|K = ∇(2)V |K = (∇ ⊗ ∇)V |K . Now, for arbitrary
ε > 0, we have an integer N(= N(ε)) and coefficients a0, . . . , aN such that

sup
x∈K∗

∣∣∣∣∣V (x)−
N∑

n=0

an1̃n(x)

∣∣∣∣∣ ≤ ε.

In connection with (24) this gives us

sup
x∈K

∣∣∣∣∣v(x) −
N∑

n=0

an

(
(∇ ⊗ ∇) 1̃n

)
(x)

∣∣∣∣∣ ≤ C∗ sup
x∈K∗

∣∣∣∣∣V (x)−
N∑

n=0

an1̃n(x)

∣∣∣∣∣ ≤ C∗ε.

This is the desired result. �
7. C-closure

We discuss the relations between the spaces pot(Aext)|�ext and pot(0)
(
�ext

)
. Of course, we

have

pot(Aext)|�ext ⊂ pot(0)
(
�ext

)
. (25)

The inclusion is, in fact, strict: choose y ∈ Aext\�ext, then the field

x �→ ∇x

1

|x − y| , x �= y, (26)

is an element of class pot(0)
(
�ext

)
, but it is obvious that the vector field is not an element of

pot(Aext)|�ext. Hence,

pot(Aext)|�ext �= pot(0)
(
�ext

)
. (27)

However, we are able to prove the following closure theorem (see [36]):

THEOREM 7.1. The space pot(Aext)|�ext is a dense subset of pot(0)
(
�ext

)
with respect to

‖ · ‖c(0)(�ext), i.e. for any given value ε > 0 and any element v ∈ pot(0)
(
�ext

)
there exists a

field u ∈ pot(Aext)|�ext such that

‖v − u‖c(0)(�ext) ≤ ε,

i.e.
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sup
x∈�ext

|v(x)− u(x)| ≤ ε.

The closure theorem (Theorem 7.1) enables us to derive the following approximation the-
orem:

THEOREM 7.2. Let (1̃n)n=0,1,... be a system of functions 1̃n ∈ Pot(0)
(
Aext

)
, n = 0, 1, . . . ,

such that (1̃n|A)n=0,1,... is complete in L2(A). Then, every function v ∈ pot(0)
(
�ext

)
can be

approximated in the metric ‖ · ‖c(0)(�ext) by a finite linear combination of the gradient fields

(∇1̃n)n=0,1,..., i.e. for given ε > 0 and v ∈ pot(0)
(
�ext

)
, there exist an integer N(= N(ε))

and coefficients a0, . . . , aN such that

sup
x∈�ext

∣∣∣∣∣v(x)−
N∑

n=0

an

(
∇1̃n

)
(x)

∣∣∣∣∣ ≤ ε. (28)

Proof. In comparison to Theorem 7.1 it remains to prove that any continuous linear func-

tional F on pot(0)
(
�ext

)
satisfying F

(
∇1̃n|�ext

)
= 0 for n = 0, 1, . . . , is zero on the set

pot(Aext)|�ext, since this implies that spann=0,1,...(∇1̃n|�ext) is dense in pot(Aext)|�ext with
respect to ‖ · ‖c(0)(�ext)

according to a theorem in e.g. [44].
Let u be a vector field of class pot(Aext). Then we know that there exists a function

U ∈ Pot(Aext) with u = ∇U . Since (1̃n)n=0,1,... is assumed to be a scalar basis system in
Aext, the function U can be approximated by finite linear combinations UN of (1̃n)n=0,1,...,
i.e. UN → U on each compact subset K of Aext. A result given in [41, p. 190] shows that
any partial derivative of UN tends to the corresponding partial derivative of U uniformly on
each compact subset K of Aext. We consider, in particular, the second-order derivatives and
a bounded neighbourhood of �. Then, by application of the mean value theorem of multidi-
mensional analysis, ∇UN → ∇U in the norm ‖ · ‖c(0)(�ext)

. In accordance with the assumption
F
(∇UN |�ext

) = 0. Hence, the continuity of F gives us

F(u|�ext) = F
(∇U |�ext

) = lim
N→∞

F
(∇UN |�ext

) = 0,

as required. �
Hence, the external gravitational field v of the Earth admits a uniform approximation by

gradient fields of scalar basis systems of class Pot(0)
(
Aext

)
on and outside the Earth’s surface.

From an extended version of the Helly Theorem (see [45]) we are able to derive the
following corollaries, which play an important role in hi-lo SST of determining the Earth’s
gravitational field from a finite set of GPS-SST data.

COROLLARY 7.3. (hi-lo SST) Let the assumptions of Theorem 7.2 be fulfilled. Let χ be a finite
subset of � ⊂ �ext satisfying (8). Then, for given ε > 0 and v ∈ pot(0)

(
�ext

)
, there exist an

integer N(= N(ε)) and coefficients a0, . . . , aN such that

sup
x∈�ext

∣∣∣∣∣v(x)−
N∑

n=0

an

(
∇1̃n

)
(x)

∣∣∣∣∣ ≤ ε

and

v(x) =
N∑

n=0

an

(
∇1̃n

)
(x), x ∈ χ.
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COROLLARY 7.4. (lo-lo SST) Let the assumptions of Corollary 7.3 be fulfilled. Then, for given
ε > 0 and v ∈ pot(0)(�ext), there exist an integer N(= N(ε)) and coefficients a0, . . . , aN such
that

sup
x∈�ext

∣∣∣∣∣v(x)−
N∑

n=0

an

(
∇1̃n

)
(x)

∣∣∣∣∣ ≤ ε (29)

and

h(x) · (v(x)− v(x + h(x))) =
N∑

n=0

anh(x) ·
((

∇1̃n

)
(x)−

(
∇1̃n

)
(x + h(x))

)
, (30)

x ∈ χ , where h is the intersatellite distance.

COROLLARY 7.5. (SGG) Under the assumptions of Corollary 7.3 we have

sup
x∈�ext

∣∣∣∣∣v(x)−
N∑

n=0

an

(
∇1̃n

)
(x)

∣∣∣∣∣ ≤ ε

and

(−x) · (∇v(x)(−x)) =
N∑

n=0

an ((−x) · ∇x) ((−x) · ∇x) 1̃n(x),

x ∈ χ .

COROLLARY 7.6 (Combined SST/SGG) Let the assumptions of Corollary 7.3 be fulfilled.
Then, for given ε > 0 and v ∈ pot(0)(�ext), there exist an integer N(= N(ε)) and coefficients
a0, . . . , aN such that

sup
x∈�ext

∣∣∣∣∣v(x)−
N∑

n=0

an

(
∇1̃n

)
(x)

∣∣∣∣∣ ≤ ε

and

(−x) · v(x) =
N∑

n=0

an(−x) · ∇1̃n(x),

x ∈ X1,

h(x) · (v(x)− v(x + h(x))) =
N∑

n=0

anh(x) ·
((

∇1̃n

)
(x)−

(
∇1̃n

)
(x + h(x))

)
,

x ∈ X2, and

(−x) · (∇v(x)(−x)) =
N∑

n=0

an ((−x) · ∇x) ((−x) · ∇x) 1̃n(x),

x ∈ X3, where h is the intersatellite distance and X1 ∪ X2 ∪ X3 = X.
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In other words, the geopotential field admits an approximation (in ε-accuracy with respect to
the uniform topology on �ext) consistent with combined scalar hi-lo SST, lo-lo SST, and SGG
data.

8. Multiscale approximation

Of course, there still remain two essential problems, namely the choice of the basis sys-
tem {1̃n}n=0,1,... and the appropriate strategy of determining the coefficients in the linear
combination consistent with the satellite data.

(i) Concerning the choice of the basis system a particular role is played by the system of
outer harmonics. The polynomial structure has tremendous advantages. In fact, outer harmon-
ics are classical means of modelling the long-wavelength parts of the Earth’s gravitational
field. But, according to the uncertainty principle (cf. [16, 46, 47]), the ideal frequency lo-
calization implies no space localization. Outer harmonics as non-space-localizing structures
need a uniformly dense coverage of data everywhere. Local changes are not treatable locally;
they affect all constituting elements, i.e. the whole table of Fourier (orthogonal) coefficients.
The critical point, besides numerical problems, is that equidistributed material of sufficiently
small data width must be handled by a trial system of non-space localizing functions. In the
opinion of the authors, therefore, the numerical use of outer harmonics is limited for mod-
elling satellite data containing medium-to-short-wavelengths features. As a matter of fact, the
uncertainty principle in constructive approximation tells us that there exists a hierarchy of the
scalar basis functions (mentioned in Section 5) characterized by Figure 15. What we really
need for the future satellite scenario are more and more space-localizing basis systems in
order to model medium-to-short-wavelengths features of the Earth’s gravitational potential.
In this respect it should be mentioned that satellite-to-satellite tracking (hi-lo SST) may be
considered to be the interface of outer harmonics and kernel functions, whereas satellite grav-
ity gradiometry (SGG) represents the interface of medium-to-strongly space-localizing kernel
functions, which seems to be equivalent to the interface of bandlimited and non-bandlimited
kernel functions (see also Figure 15).

(ii) Many methods concerned with numerical procedures for determining linear combi-
nations approximating the Earth’s gravitational field are available in the literature. Probably
best known are collocational, least-squares, or Galerkin methods. Usually, large linear systems
must be solved to guarantee a sufficient accuracy. However, satellite methods provide us with
extremely huge numbers of data. Standard mathematical theory and numerical methods are
not at all adequate for the handling of data systems with a structure such as this, because these
methods are simply not adapted to the specific character and number of the spaceborne data.
They quickly reach their capacity limit, even on very powerful computers. In the opinion of
the authors a reconstruction of the gravitational field requires careful (multi)scale analysis,
fast solution techniques, and a proper stabilization of the solution by regularization. Regular-
ization can be formulated as a multiresolution analysis (for other strategies see e.g. [16, 29,
30] and the references therein). Economical multiscale recovering of the Earth’s gravitational
field is provided by fast wavelet mechanisms (tree algorithms and pyramid schemata) thereby
avoiding completely the solution of any linear system. Essential numerical components of
multiscale approximation from spaceborne data have been described in [16]. Future results on
gravitational field determination should concentrate on combined models (see Corollary 7.6),
where expansions (linear combinations) in terms of outer harmonics have to be combined
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with more and more space-localizing kernel functions. Even for local approximation the phi-
losophy of the authors developed from the uncertainty principle is the following three-step
procedure for modelling the data on the orbit of the satellite. First an outer harmonic approach
should be used to model the global trends, i.e. the low-wavelengths part. In a second step
band-limited wavelets showing moderate space localizing phenomena may be taken for the
medium-frequency band of the Earth’s gravitational potential. Finally, the third step consists
of non-bandlimited wavelet approximation to analyse the fine structure, i.e. short-wavelengths
phenomena for local areas within a global concept (cf. [16]). The numerical background of
this approach is justified by the results of this paper. However, for purposes of ‘downward
continuation‘ of satellite data we have to regularize the three-step solution by use of (non-
bandlimited) Tikhonov regularization (see [16, 17]) or (bandlimited) truncated singular-value
decomposition (see [16, 17, 39]).

Current Status Future Concepts

Potential differences, satellite - to satellite gravity

geoid heights, satellite tracking gradiometry

satellite altimetry observables observables

etc.

Fourier (orthogonal) one-/multilevel

expansion by kernel function

outer harmonics approximation

The idea of multiscale regularization by (bandlimited) truncated singular value decom-
position is illustrated (in a heuristic way) by the following prodecure: Suppose that there
are known from the field v ∈ pot(0)(�ext), i.e. the gradient field v = ∇V of the actual
Earth’s gravitational potential V , the set of scalar values {LNJ

1 , . . . L
NJ

NJ
} corresponding to the

observational functionals L
x
NJ
i

given by

L
NJ

i = L
x
NJ
i

(V ) =
{

((−x) · ∇x) V (x)
∣∣
x=x

NJ
i

(SST)

((−x) · ∇x) ((−x) · ∇x) V (x)
∣∣
x=x

NJ
i

(SGG)
(31)

for some set χNJ = {xNJ

1 , . . . , x
NJ

NJ
} on the spherical orbit � with radius γ , γ > supx∈� |x|, of

the LEO, where the sets χNj , j = J0, . . . , J , are given suitably in hierarchical way by setting

χNJ0 =
{
x
NJ0
1 , . . . , x

NJ0
NJ0

}
,

⊂ χNJ0+1 =
{
x
NJ0+1

1 , . . . , x
NJ0+1

NJ0+1

}
. . . . . .

⊂ χNJ =
{
x
NJ

1 , . . . , x
NJ

NJ

}
(32)
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(without loss of generality we may assume that x
Nj

i = x
Nj+1
i for i = 1, . . . , Nj , j =

J0, . . . , J − 1). The developments in the preceding sections of this paper show that, cor-
responding to v ∈ pot(0)(�ext), there exists a field u = ∇U , U ∈ Pot(1)(Aext), such that
u | �ext is in an (ε/3)-neighbourhood to v (understood in the c(0)(�ext)-topology) and L

NJ

i =
L

x
NJ
i

(U), i = 1, . . . , NJ . Now, corresponding to the field u ∈ pot(0)(Aext), there exists in an
(ε/3)-neighbourhood to u, e.g. a linear combination wJ = ∇WJ given by

WJ =
NJ∑
i=1

a
NJ

i KJ

(
·, xNJ

i

)
(33)

with

KJ (x, y) =
∞∑
k=1

2k + 1

4πα2
e−k2−J

(
α2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)

(34)

((x, y) ∈ Aext×Aext, J sufficiently large) such that LNJ

i = L
x
NJ
i

(WJ ), i = 1, . . . , NJ . Finally,

corresponding to wJ ∈ pot(0)(Aext), there exists in an (ε/3)-neighbourhood to wJ (understood
in the c(0)(�ext)-topology) a linear combination w

MJ

J = ∇W
MJ

J given by

W
MJ

J =
NJ∑
i=1

ã
NJ

i K
MJ

J

(
·, xNJ

i

)
(35)

with K
MJ

J a ‘bandlimited variant’ of KJ defined by

K
MJ

J (x, y) =
MJ∑
k=0

2k + 1

4πα2
e−k2−J

(
α2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)

(36)

((x, y) ∈ Aext × Aext, J and MJ sufficiently large) such that L
NJ

i = L
x
NJ
i

(W
MJ

J ), i =
1, . . . , NJ . In other words, regularization is obtained by use of bandlimited kernel repre-
sentation. It remains to calculate the coefficients ã

NJ

i , i = 1, . . . , NJ .
Obviously, there are two serious difficulties in the aforementioned procedure of finding the

approximate linear combination ∇W
MJ

J of v in �ext. First, the approach is non-constructive
in the sense that the a priori choice of the integers NJ and MJ is unknown. Second, our
particular computational interest is not in establishing the linear combination by interpolation
(or smoothing in the error affected case) because of the huge amount of satellite data (for
more details on interpolation and smoothing by harmonic splines see [16, 30, 31, 38, 40]
and the references therein). Therefore, we are required to find a suitable way of multiscale
approximation in the sense that v can be approximated sufficiently well by a suitable linear
combination of the representation (35) thereby satisfying L

NJ

i � L
x
NJ
i

(W
MJ

J ), i = 1, . . . , NJ .
An economical and efficient multiscale method for establishing an appropriate linear com-

bination of the scalar ‘satellite data function’ x �→ Lx(U), x ∈ Aext, given by

Lx(U) =
{

((−x) · ∇x)U(x) (SST)

((−x) · ∇x)((−x) · ∇x)U(x) (SGG)
(37)

can be deduced from harmonic wavelet theory (cf. [16]). According to this approach we let
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Lx(U) � Lx

(
W

MJ

J

)

=
NJ0∑
i=1

ã
NJ0
i (@K)

MJ0
J0

(
x, x

NJ0
i

)
+

J−1∑
j=J0

Nj∑
i=1

ã
Nj

i (@H)
Mj

j

(
x, x

Nj

i

)
,

where

(@K)
Mj

j (x, y) =
Mj∑
k=0

2k + 1

4πα2
e−k2−j

@∧(k)
(

α2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)
, (38)

j = J0, . . . , J , and

(@H)
Mj

j (x, y) = (@K)
Mj+1
j+1 (x, y) − (@K)

Mj

j (x, y), j = J0, . . . , J − 1, (39)

with MJ0 ≤ MJ0+1 ≤ . . . ≤ MJ .
The sequence {@∧(k)}k=0,1,... is given by

@∧(k) =
{
k + 1 (SST)
(k + 1)(k + 2) (SGG).

(40)

Note that the used kernels are bandlimited counterparts to the Abel-Poisson (kernel) scaling
functions (discussed in [40, p. 108]). Following the wavelet theory of [16, pp. 146–350] and
assuming (extremely) dense data material, the coefficients ã

Nj

i may be supposed by Weyl’s
law (cf. [40, p. 166]) to be simply given in the form

ã
NJ

i = 1

NJ

L
x
NJ
i

(U), i = 1, . . . , NJ (41)

and

ã
Nj

i = 1

Nj

∫
�

Lx(U)(SH)
Mj

j

(
x, x

Nj

i

)
dω(x); j = J0, . . . , J − 1; i = 1, . . . , Nj ; (42)

where (SH)
Mj

j , j = J0, . . . , J , is the Shannon kernel defined by

(SH)
Mj

j (x, y) =
Mj∑
k=0

2k + 1

4πγ 2

(
γ 2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)
. (43)

Now, we have, for i = 1, . . . , Nj

ã
Nj

i

= 1

Nj

∫
�

Lx(U)(SH)
Mj

j

(
x, x

Nj

i

)
dω(x)

= 1

Nj

∫
�

Lx(U)

∫
�

(SH)
Mj

j

(
z, x

Nj

i

)
(SH)

Mj+1
j+1 (z, x)dω(z)dω(x)

� 1

Nj

Nj+1∑
l=1

1

Nj+1
(SH)

Mj

j

(
x
Nj

i , x
Nj+1
l

) ∫
�

Lx(U)(SH)
Mj+1

j+1

(
x, x

Nj+1
l

)
dω(x)

= 1

Nj

Nj+1∑
l=1

ã
Nj+1
l (SH)

Mj

j

(
x
Nj

i , x
Nj+1
l

)
,

(44)
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where we have again used Weyl’s law (see [40])∫
�

(SH)
Mj

j

(
z, x

Nj

i

)
(SH)

Mj+1
j+1 (z, x)dω(z)

� 1

Nj+1

Nj+1∑
l=1

(SH)
Mj

j

(
x
Nj+1
l , x

Nj

i

)
(SH)

Mj+1
j+1

(
x
Nj+1
l , x

)
.

In conclusion, the satellite data can be simply read in the initial level J and all coefficients
ã
Nj

i , j = J0, . . . , J − 1, can be obtained by recursion. Moreover, it should be noted that the
sign ‘�’ can be replaced by ‘=’ if outer harmonic exact integration formulae (see e.g. [16,
pp. 99–146]) are applied. In conclusion, WMJ

J can be represented in the form

W
MJ

J =
NJ0∑
i=1

ã
NJ0
i K

MJ0
J0

(
x, x

NJ0
i

)
+

J−1∑
j=J0

Nj∑
i=1

ã
Nj

i H
Mj

j

(
x, x

Nj

i

)
, (45)

where K
Mj

j ,H
Mj

j are given by

K
Mj

j (x, y) =
Mj∑
k=0

2k + 1

4πα2
e−k2−j

(
α2

|x||y|
)k+1

Pk

(
x

|x| ·
y

|y|
)
, j = J0, . . . , J, (46)

and

H
Mj

j (x, y) = K
Mj+1
j+1 (x, y) −K

Mj

j (x, y), j = J0, . . . , J − 1. (47)

The multiscale approach can be interpreted as follows:

wlo
J0
(x) =

NJ0∑
i=1

ã
NJ0
i ∇xK

MJ0
J0

(
x, x

NJ0
i

)
(48)

can be understood as J0-level low-pass filter of the vector field v in �ext, while

wba
J0
(x) =

NJ0∑
i=1

ã
NJ0
i ∇xH

MJ0
J0

(
x, x

NJ0
i

)
(49)

is the J0-level band-pass filter of v that must be added to wlo
J0

to obtain the (J0 + 1)–level low
pass filter wlo

J0+1 of the vector field v, i.e.

wlo
J0+1(x) = wlo

J0
(x)+ wba

J0
(x), x ∈ �ext. (50)

Adding the (J0 + 1)-level band-pass filter wba
J0+1 of v

wba
J0+1(x) =

NJ0+1∑
i=1

ã
NJ0+1

i ∇xH
MJ0+1

J0+1

(
x, x

NJ0+1

i

)
(51)

we obtain the (J0 + 2)–level low pass filter wlo
J0+2 of v, etc. By observing this structure we are

finally led to the following decomposition and reconstruction scheme:
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Decomposition scheme

Reconstruction scheme

The above decomposition and reconstruction schemata admit canonical techniques of
wavelet thresholding (cf. [48]) if the data are affected by errors and statistical a priori in-
formation is available.

EGM96 is a common model for the Earth’s gravitational potential. The multiresolution
analysis ‘looks at’ the Earth’s gravitational potential through a microscope, whose resolution
gets finer and finer. Thus it associates to the gravitational potential and its radial derivatives a
sequence of smoothed versions, labelled by the scale parameter. This aspect is illustrated by
the Figures 9 to 14 for the (bandlimited) EGM96 model. For the computations of the figures
the potential U and its radial derivatives have been calculated on a finite point grid XNj as a
simulation of real measurements.

The observables of interest are

Lx(U) = ((−x) · ∇x) U(x)

(SST, Figures 9 and 10) evaluated at an orbit with 400 km height,

Lx(U) = ((−x) · ∇x) ((−x) · ∇x) U(x)

(SGG, Figures 11 and 12) at an altitude of 200 km, and U itself at the surface of the Earth.
The pyramid scheme, discussed above, allows the calculation of approximations W

Mj

j ; j =
J0, . . . , J ; to U , such that Lx(W

Mj

j ) approximates Lx(U) in both choices of L. The ap-

proximation W
Mj

j is defined by (35) where the coefficients {ãNj

i }i=1,...,NJ ;j=J0,...,J have been
determined by use of the pyramid scheme formula (44).

The left columns of the figures show Lx(W
Mj

j ) and W
Mj

j , respectively, for j = 3, . . . , 8.
The right columns illustrate the scale steps, which are given by (cf.(45))

Nj∑
i=1

ã
Nj

i H
Mj

j (x, x
Nj

i ); j = 3, . . . , 7;

in case of the potential, and
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Figure 9. Multiscale representation of the first radial derivative of EGM96 at height 400 km (CHAMP concept)
in bandlimited scale spaces (left) and detail spaces (right); scales 3 (top) to 5 (bottom)

Nj∑
i=1

ã
Nj

i (@H)
Mj

j (x, x
Nj

i ); j = 3, . . . , 7;

in the case of satellite data.
Summarizing the philosophy of this paper we are finally led to the scheme in Figure 15.
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Figure 10. Multiscale representation of the first radial derivative of EGM96 at height 400 km (CHAMP concept)
in bandlimited scale spaces (left) and detail spaces (right); scales 6 (top) to 8 (bottom)

9. Gravity-field applications

The knowledge of the gravitational field of the Earth is of great importance for many appli-
cations in geosciences and industry from which we only mention six significant examples (cf.
e.g. [22, 23]):
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Figure 11. Multiscale representation of the second radial derivative of EGM96 at height 200 km (GOCE concept)
in bandlimited scale spaces (left) and detail spaces (right); scales 3 (top) to 5 (bottom)

Satellite orbits. For any positioning from space the uncertainty in the orbit of the spacecraft
is the limiting factor. The future spaceborne techniques will eliminate basically all gravita-
tional uncertainties in satellite orbits.

Solid-Earth physics. The gravity anomaly field derivable from future satellite observations
has its origin mainly in mass inhomogenities of the continental and oceanic lithosphere. To-
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Figure 12. Multiscale representation of the second radial derivative of EGM96 at height 200 km (GOCE concept)
in bandlimited scale spaces (left) and detail spaces (right); scales 6 (top) to 8 (bottom)

gether with height information and regional tomography, a much deeper understanding of
tectonic processes should be obtainable.

Physical oceanography. The future altimeter satellites in combination with a precise geoid
will deliver global dynamic ocean topography. From it global surface circulation and its vari-
ations in time can be computed resulting in a completely new dimension of ocean modelling.
Circulation allows the determination of transport processes of e.g. polluted material.
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Figure 13. Multiscale representation of EGM96 at height 0 km in bandlimited scale spaces (left) and detail spaces
(right); scales 3 (top) to 5 (bottom)

Earth system. There is a growing awareness of global environmental problems (for exam-
ple, the CO2-question, the rapid decrease of rain forests, global sea level changes, etc.). What
is the role of the future airborne methods and satellite missions in this context? They do not
tell us the reasons for physical processes, but it is essential to bring the phenomena into one
system (e.g. to make sea-level records comparable in different parts of the world). In other
words, the geoid is viewed as an almost static reference for many rapidly changing processes



52 W. Freeden, V. Michel, and H. Nutz

Figure 14. Multiscale representation of EGM96 in bandlimited scale spaces (left) and detail spaces (right) at
height 0 km; scales 6 (top) to 8 (bottom)

and at the same time as a ‘frozen picture’ of tectonic processes that evolved over geological
time spans.

Geodesy and civil engineering. Accurate heights are needed for civil constructions, map-
ping, etc. They are obtained by levelling, a very time-consuming and expensive procedure.
Nowadays geometric heights can be obtained fast and efficiently from space positioning (for
example, GPS and/or GLONASS). The geometric heights are convertible to levelled heights
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Figure 15. Survey

by subtracting the precise geoid, which is implied by a high resolution gravitational potential.
To be more specific, in those areas where good gravity information is available already, the
future data information will eliminate all medium and long-wavelength distortions in unsur-
veyed areas. GPS and/or GLONASS together with the planned explorer satellite missions for
the past 2000 time frame will provide high quality height information at global scale.

Exploration geophysics and prospecting. Airborne gravity measurements have usually been
used together with aeromagnetic surveys, but the poor precision of airborne gravity measure-
ments has hindered a wider use of this type of measurements. Strong improvements can be
expected from the future scenario. Airborne gravity, of course, has a great advantage because
measurements of the gravity field are not restricted to certain areas. Furthermore, knowledge
of regional geologic structures can easily be gained by means of airborne data. For purposes
of exploration, however, the determination of the absolute gravity field is of little significance
as well as gravity anomalies of dimension very much greater than the gravity anomalies
caused by e.g. the oil and gas structures. The fundamental interest in gravitational methods
in exploration is based on the measurements of small variations.

10. Concluding remarks

The missions CHAMP (2000), GRACE (2002), GOCE (2005) will exploit the old concepts of
satellite-to-satellite tracking in the high-low mode, in the low-low mode and of satellite gravity
gradiometry, respectively. CHAMP is improving our knowledge of the gravity field by about a
factor two in resolution. GRACE aims at monitoring periodically time variations of the long-
wavelength part of the gravitational field. The GOCE mission has been proposed to provide
the most accurate global and high-resolution snapshot of the gravitational field and its corre-
sponding geoidal surface. All satellite missions are intended for use of a wide range of research
and application areas, including ocean circulation, climate change studies, and physics of the
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interior of the Earth. Various scientific teams in Europe involved in this study have designed
the mathematical framework of the simulations and the data management. The simulation
results mostly are based on the global use of multipole systems, i.e. Fourier expansions in
terms of outer harmonics. However, concerning the data evaluation we are confronted with
the problem that the mathematical methods actually dominating in practice will not be able to
handle the new huge satellite data systems neither theoretically nor numerically, particularly
if special attention should be payed to the important aspect of an intensified spatially and
temporally regionalizing treatment. Moreover, a multiscale analysis by harmonic wavelets as
proposed in this work is necessary, i.e. a transformation of the geophysically relevant data
into constituent elements which is characterized by three essential features: approximation
property, decorrelation capability and fast algorithms. These properties are the key to a multi-
tude of possibilities, particularly data compression and transmission, denoising and selective
multiresolution.

In conclusion, the Geomathematics Group at the University of Kaiserslautern has been
able to develop new mathematical methods for the evaluation of geodata, based on methods
of multiscale analysis, which are able to meet the new demands described above. It is planned
that these methods shall be further developed systematically and implemented as a homoge-
neous software structure. On the basis, the future programme ZOOM IN is intended to offer
multiscale models within the desired scales from the global observation of our planet from
space up to regional dimensions. In doing so, the users have an instrument in their hands
that is classified according to wavelength, frequency, space and time, which results in a better
understanding of the interrelations and interactions and a scale-specific observation of the
system Earth.

In the near future, the Geomathematics Group wants to concentrate on the research areas of
the spatial-temporal multiscale analysis of the gravitational field, magnetic field, sea-surface
variations and density variations. On the medium term, the application to high-precision geoid,
ocean-circulation, processes in the lithosphere and geoprospection will be accounted for.
These areas must be dealt with in parallel, which guarantees synergies with respect to method-
ical know-how, data processing and software structure. However, it is still more important that
an integrated concept be developed from the beginning which is capable of handling data of
different sources and origin and different observables in common. Examples are the planned
connection of the working areas gravitational and magnetic field, as well as the combination
of satellite and seismic data.

In the long run, that is after the initial years, the authors are convinced that ZOOM IN
will progressively continue this integration in order to develop applications especially for the
economically important area of geoprospection. For the research areas mentioned above, we
plan an adaptation of the methods, which are at different levels of development, to the needs
of the respective scientific or commercial user groups.
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